首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63871篇
  免费   5961篇
  国内免费   2850篇
电工技术   3666篇
技术理论   2篇
综合类   4204篇
化学工业   10534篇
金属工艺   3742篇
机械仪表   4125篇
建筑科学   4715篇
矿业工程   2155篇
能源动力   1725篇
轻工业   4060篇
水利工程   1095篇
石油天然气   3953篇
武器工业   544篇
无线电   7774篇
一般工业技术   7778篇
冶金工业   3001篇
原子能技术   678篇
自动化技术   8931篇
  2024年   153篇
  2023年   1127篇
  2022年   1572篇
  2021年   2557篇
  2020年   2015篇
  2019年   1779篇
  2018年   1946篇
  2017年   2150篇
  2016年   1952篇
  2015年   2531篇
  2014年   3073篇
  2013年   3671篇
  2012年   4157篇
  2011年   4532篇
  2010年   3769篇
  2009年   3575篇
  2008年   3461篇
  2007年   3347篇
  2006年   3725篇
  2005年   3095篇
  2004年   2163篇
  2003年   1823篇
  2002年   1623篇
  2001年   1449篇
  2000年   1562篇
  1999年   1695篇
  1998年   1498篇
  1997年   1272篇
  1996年   1142篇
  1995年   961篇
  1994年   836篇
  1993年   575篇
  1992年   437篇
  1991年   364篇
  1990年   257篇
  1989年   214篇
  1988年   185篇
  1987年   110篇
  1986年   96篇
  1985年   56篇
  1984年   28篇
  1983年   17篇
  1982年   27篇
  1981年   16篇
  1980年   21篇
  1979年   10篇
  1978年   7篇
  1977年   5篇
  1976年   14篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
11.
This review examines the application, limitations, and potential alternatives to the Hagberg–Perten falling number (FN) method used in the global wheat industry for detecting the risk of poor end-product quality mainly due to starch degradation by the enzyme α-amylase. By viscometry, the FN test indirectly detects the presence of α-amylase, the primary enzyme that digests starch. Elevated α-amylase results in low FN and damages wheat product quality resulting in cakes that fall, and sticky bread and noodles. Low FN can occur from preharvest sprouting (PHS) and late maturity α-amylase (LMA). Moist or rainy conditions before harvest cause PHS on the mother plant. Continuously cool or fluctuating temperatures during the grain filling stage cause LMA. Due to the expression of additional hydrolytic enzymes, PHS has a stronger negative impact than LMA. Wheat grain with low FN/high α-amylase results in serious losses for farmers, traders, millers, and bakers worldwide. Although blending of low FN grain with sound wheat may be used as a means of moving affected grain through the marketplace, care must be taken to avoid grain lots from falling below contract-specified FN. A large amount of sound wheat can be ruined if mixed with a small amount of sprouted wheat. The FN method is widely employed to detect α-amylase after harvest. However, it has several limitations, including sampling variability, high cost, labor intensiveness, the destructive nature of the test, and an inability to differentiate between LMA and PHS. Faster, cheaper, and more accurate alternatives could improve breeding for resistance to PHS and LMA and could preserve the value of wheat grain by avoiding inadvertent mixing of high- and low-FN grain by enabling testing at more stages of the value stream including at harvest, delivery, transport, storage, and milling. Alternatives to the FN method explored here include the Rapid Visco Analyzer, enzyme assays, immunoassays, near-infrared spectroscopy, and hyperspectral imaging.  相似文献   
12.
Knowledge and Information Systems - Many data mining algorithms cannot handle incomplete datasets where some data samples are missing attribute values. To solve this problem, missing value...  相似文献   
13.
惠鑫  黄小峰  刘虎  马志峰 《化学与粘合》2022,44(3):224-228+237
为实现对注水井的酸化解堵及增注降压的效果,保障低渗油田开发的高效性与安全性,对低渗油田高压注水井在线酸化技术进行研究和试验分析。制备复合酸液体系,确定在线酸化施工中的注酸速度与强度等参数,并设计在线监测装置实时监控在线酸化施工,检验结果表明,该复合酸液具有较高的螯合性与沉淀抑制性,具有较高的岩粉溶蚀率;应用该复合酸液实施在线酸化施工,施工后试验注水井的地层吸液性及注水量显著上升,井口油压及施工压力显著下降,增注降压效果明显,可解除注水井储层的堵塞物,为提升低渗油田开发的安全性与高效性提供保障。实验结果表明,所提技术使井口的油压由9.11MPa降到1.71MPa、泵注压力由9.77MPa降到7.51MPa,说明能有效缓解井口油压以及泵注压力,加大整体的施工排量,实现增注降压的目标。  相似文献   
14.
15.
In this paper, a novel hybrid structure of Pd doped ZnO/SnO2 heterojunction nanofibers with hexagonal ZnO columns was one step synthesized from electrospun precursor nanofibers. Due to the synergistic effect of hexagonal ZnO, SnO2 and Pd, the structure exhibited excellent hydrogen (H2) gas sensing properties. At low-temperature of 120 °C, the response (Ra/Rg) to 100 ppm H2 gas exceeded 160, the response/recovery time was only 20 s and 6 s respectively and the limit of detection was only 0.5 ppm. Meanwhile, it also had good selectivity for H2 gas and excellent linearity. In addition, the materials were characterized by XRD, FESEM, HRTEM, XPS, and the synthesis mechanism and gas sensing mechanism were proposed.  相似文献   
16.
本文开发了一种新型的方舱夹芯板用室温固化高强度环氧结构胶黏剂,验证了其物化特性、相关力学性能和环境适应性。结果表明此胶黏剂具有优良性能,可以满足方舱用大板胶黏剂的使用需求。  相似文献   
17.
Ge2Sb2Tes is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge2Sb2Te5 is available.This limits the optical switching states of traditional active dis-plays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubic-hexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching perfor-mance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to intro-duce small interstitial impurities(like N)in Ge2Sb2Tes,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suit-able impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb4Te7,GeSb2Te4,Ge3Sb2Te6,Sb2Te3 will produce high optical con-trast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.  相似文献   
18.
The soft nature of organic–inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. Here, using the methylammonium lead iodide as a representative exploratory platform, it is observed that the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable. By a comprehensive in situ neutron/synchrotron-based analysis and optical characterizations, a remarkable photoluminescence (PL) enhancement by threefold is convinced in deuterated CD3ND3PbI3, which also shows much greater structural robustness with retainable PL after high peak-pressure compression–decompression cycle. With the first-principles calculations, an atomic level understanding of the strong correlation among the organic sublattice and lead iodide octahedral framework and structural photonics is proposed, where the less dynamic CD3ND3+ cations are vital to maintain the long-range crystalline order through steric and Coulombic interactions. These results also show that CD3ND3PbI3-based solar cell has comparable photovoltaic performance as CH3NH3PbI3-based device but exhibits considerably slower degradation behavior, thus representing a paradigm by suggesting isotope-functionalized perovskite materials for better materials-by-design and more stable photovoltaic application.  相似文献   
19.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
20.
Bone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D-printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on-demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号